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Abstract. We consider an inertial model of chemotactic aggregation generalizing the Keller-Segel model
and we study the linear dynamical stability of an infinite and homogeneous distribution of cells (bacteria,
amoebae, endothelial cells, ...) when inertial effects are accounted for. These inertial terms model cells
directional persistance. We determine the condition of instability and the growth rate of the perturbation
as a function of the cell density and the wavelength of the perturbation. We discuss the differences be-
tween overdamped (Keller-Segel) and inertial models. Finally, we show the analogy between the instability
criterion for biological populations and the Jeans instability criterion in astrophysics.

PACS. 05.45.-a Nonlinear dynamics and chaos – 87.10.+e General theory and mathematical aspects –
89.20.-a Interdisciplinary applications of physics

1 Introduction

The self-organization of biological cells (bacteria, amoe-
bae, endothelial cells, ...) or even insects (like ants) due
to the long-range attraction of a chemical (pheromone,
smell, food, ...) produced by the organisms themselves is
a long-standing problem in physical sciences [1]. This pro-
cess is called chemotaxis. The chemotactic aggregation of
biological populations is usually studied in terms of the
Keller-Segel model [2]:

ξ
∂ρ

∂t
= ∇ · (D2∇ρ − D1∇c), (1)

ε
∂c

∂t
= −k(c)c + ρf(c) + D∆c, (2)

which consists in a drift-diffusion equation (1) governing
the evolution of the density of cells ρ(r, t) coupled to a dif-
fusion equation (2) involving terms of source and degra-
dation for the secreted chemical c(r, t). The chemical is
produced by the organisms (cells) at a rate f(c) and is de-
graded at a rate k(c). It also diffuses according to Fick’s
law with a diffusion coefficient D. The concentration of
cells changes as a result of an oriented chemotactic motion
in a direction of a positive gradient of the chemical and
a random motion analogous to diffusion. In equation (1),
D2(ρ, c) is the diffusion coefficient of the cells and D1(ρ, c)
is a measure of the strength of the influence of the chemi-
cal gradient on the flow of cells. These coefficients depend
a priori on the concentration of cells and on the concen-
tration of the chemical. The Keller-Segel model is able to

a e-mail: chavanis@irsamc.ups-tlse.fr

reproduce the chemotactic aggregation (collapse) of bio-
logical populations when the attractive drift term D1∇c
overcomes the diffusive term D2∇ρ.

However, recent experiments of in vitro formation of
blood vessels show that cells randomly spread on a gel ma-
trix autonomously organize to form a connected vascular
network that is interpreted as the beginning of a vascula-
ture [3]. This phenomenon is responsible of angiogenesis, a
major actor for the growth of tumors. These networks can-
not be explained by the parabolic model (1)-(2) that leads
to pointwise blow-up. However, they can be recovered by
hyperbolic models that lead to the formation of networks
patterns that are in good agreement with experimental re-
sults. These models take into account inertial effects and
they have the form of hydrodynamic equations [3]:

∂ρ

∂t
+ ∇ · (ρu) = 0, (3)

∂u
∂t

+ (u · ∇)u = −1
ρ
∇p + ∇c, (4)

∂c

∂t
= −kc + fρ + Dc∆c. (5)

The inertial term models cells directional persistence and
the general density dependent pressure term −∇p(ρ) can
take into account the fact that the cells do not interpen-
etrate. In these models, the particles concentrate on lines
or filaments [3,4]. These structures share some analogies
with the formation of ants’ networks (due to the attrac-
tion of a pheromonal substance) and with the large-scale
structures in the universe that are described by similar
hydrodynamic (hyperbolic) equations, the Euler-Poisson
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system [5]. The similarities between the networks observed
in astrophysics (see Figs. 10, 11 of [6]) and biology (see
Figs. 1, 2 of [3]) are striking. In order to make the connec-
tion between the parabolic model (1)-(2) and the hyper-
bolic model (3)-(5), we consider a model of the form

∂ρ

∂t
+ ∇ · (ρu) = 0, (6)

ρ

[
∂u
∂t

+ (u · ∇)u
]

= −D2∇ρ + D1∇c − ξρu, (7)

ε
∂c

∂t
= −k(c)c + ρf(c) + D∆c, (8)

including a friction force −ξρu. This type of damped hy-
drodynamic equations was introduced in [7,8] at a general
level. This inertial model takes into account the fact that
the particles do not respond immediately to the chemo-
tactic drift but that they have the tendency to continue
in a given direction on their own. However, after a relax-
ation time of order ξ−1, their velocity will be aligned with
the chemotactic gradient. This is modeled by an effective
friction force in equation (7) where the friction coefficient
ξ ∼ τ−1 is interpreted as the inverse of the relaxation
time. This term can also represent a physical friction of
the organisms against a fixed matrigel. In the strong fric-
tion limit ξ → +∞, or for large times t � ξ−1, one can
formally neglect the inertial term in equation (7) and ob-
tain [8–10]:

ρu = −1
ξ

(D2∇ρ − D1∇c) + O(ξ−2). (9)

Substituting this relation in equation (6), we recover
the parabolic Keller-Segel model (1)-(2). Therefore, the
Keller-Segel model can be viewed as an overdamped limit
of a hydrodynamic model involving a friction force. Alter-
natively, neglecting the friction force ξ = 0, we recover the
hydrodynamic model introduced in [3].

In this paper, we study the linear dynamical stability of
an infinite and homogeneous distribution of cells with re-
spect to the inertial model (6)-(8). We determine the con-
dition of instability and the growth rate of the perturba-
tion, and discuss the differences with the results obtained
with the Keller-Segel model (1)-(2). We also discuss some
analogies with the dynamical stability of self-gravitating
systems. Indeed, there are many analogies between the
chemotactic aggregation of biological populations and the
dynamics of self-gravitating Brownian particles [9]. In par-
ticular, the Keller-Segel model (1)–(2) is similar to the
Smoluchowski-Poisson system [11] and the hydrodynamic
equations (6)-(8) are similar to the damped Euler equa-
tions of Brownian particles [8,10]. The main difference
between biological systems and self-gravitating Brownian
particles is that the Poisson equation in the gravitational
problem is replaced by a more general field equation (8)
taking into account the specificities of the biological prob-
lem. Owing to this analogy, we shall discuss the relation
between the instability criterion of biological populations
and the Jeans instability criterion [12] in astrophysics.

2 Instability criterion for biological
populations

2.1 The dispersion relation

We consider an infinite and homogeneous stationary solu-
tion of equations (6–8) with u = 0, ρ = Cst. and c = Cst.
such that

k(c)c = f(c)ρ. (10)

Linearizing the equations around this stationary solution,
we get

∂δρ

∂t
+ ρ∇ · δu = 0, (11)

ρ
∂δu
∂t

= −D2∇δρ + D1∇δc − ξρδu, (12)

ε
∂δc

∂t
= (f ′(c)ρ − k)δc + f(c)δρ + D∆δc, (13)

where we have set k = k(c) + ck′(c). Eliminating the ve-
locity between equations (11) and (12), we obtain

∂2δρ

∂t2
+ ξ

∂δρ

∂t
= D2∆δρ − D1∆δc. (14)

Looking for solutions of the form δρ ∼ δρ̂eσteiq·r and δc ∼
δĉeσteiq·r, we get

(F − εσ)δĉ + f(c)δρ̂ = 0, (15)

D1q
2δĉ − (D2q

2 + σ(σ + ξ))δρ̂ = 0, (16)

where F = f ′(c)ρ − k − q2D. These equations have non-
trivial solutions only if the determinant of the system is
equal to zero yielding the dispersion relation

εσ3 + (εξ − F )σ2 − (Fξ − εq2D2)σ

− q2(f(c)D1 + D2F ) = 0. (17)

The condition of marginal stability (σ = 0) corresponds
to f(c)D1 + D2F = 0 and the condition of instability is

f(c)D1 + D2F > 0. (18)

We note that the instability criterion does not depend
on the value of ε and ξ. Let us consider in detail some
particular cases.

2.2 The case ε = 0

When the chemical has a large diffusivity, the temporal
term in equation (8) can be neglected [13]. Thus, we for-
mally consider ε = 0. In that case, the dispersion rela-
tion (17) reduces to

σ2 + ξσ + q2

(
D2 +

f(c)D1

F

)
= 0. (19)



P.H. Chavanis: Jeans type instability for a chemotactic model of cellular aggregation 435

The discriminant is

∆(q) = ξ2 − 4q2

(
D2 +

f(c)D1

F (q)

)
, (20)

and the two roots are

σ± =
−ξ ± √

∆(q)
2

. (21)

If Re(σ) < 0 the perturbation decays exponentially
rapidly and if Re(σ) > 0 the perturbation grows ex-
ponentially rapidly. In that case, the system is unsta-
ble and Re(σ) is the growth rate of the perturbation. If
D2 + f(c)D1/F < 0, then ∆ > ξ2 so that σ+ > 0 (unsta-
ble). Alternatively, if D2+f(c)D1/F ≥ 0, then ∆ ≤ ξ2. Ei-
ther ∆ ≤ 0 and Re(σ) = −ξ/2 ≤ 0 (stable) or 0 ≤ ∆ ≤ ξ2

and σ± ≤ 0 (stable). Therefore, the system is unstable if

D2 <
f(c)D1

k − f ′(c)ρ + Dq2
, (22)

and stable otherwise. To determine the range of unstable
wavelengths, we must consider different cases:

2.2.1 If k − f ′(c)ρ ≥ 0

In that case, a necessary condition of instability is that

D2 <
f(c)D1

k − f ′(c)ρ
≡ (D2)crit. (23)

If this condition is fulfilled, the unstable wavenumbers are
determined by

q2 ≤ 1
D

[
f(c)D1

D2
+ f ′(c)ρ − k

]
≡ q2

max. (24)

The growth rate of the perturbation with wavenumber q
is σ+ = 1

2 (−ξ +
√

∆(q)). Therefore, the most unstable
mode q∗ is the one which maximizes ∆(q). It is given by

Dq2
∗ =

[
f(c)D1(k − f ′(c)ρ)

D2

]1/2

+ f ′(c)ρ − k. (25)

The largest growth rate σ∗ is then determined by

2σ∗ = −ξ +

√√√√√ξ2 +
4f(c)D1

D

⎛
⎝1 −

√
D2(k − f ′(c)ρ)

f(c)D1

⎞
⎠

2

.

(26)

In particular, for ξ = 0, we have

2σ∗ =

√
4f(c)D1

D

⎛
⎝1 −

√
D2(k − f ′(c)ρ)

f(c)D1

⎞
⎠ . (27)

The range of unstable wavelengths is determined graph-
ically in Figure 1 and the evolution of the growth rate
of the perturbation as a function of the wavenumber is
plotted in Figure 2 (we have also consider the case ε 	= 0
in this figure by solving equation (17) which is a second
degree equation in x = q2).
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Fig. 1. Graphical construction determining the range of un-
stable wavenumbers. We have taken ξ = D2 = D = 1, fD1 = 2
and k − f ′(c)ρ = 1 (solid line) or k − f ′(c)ρ = 0 (dashed line).
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Fig. 2. Evolution of the growth rate of the perturbation as a
function of the wavenumber for different values of ε. We have
taken ξ = D2 = D = 1, fD1 = 2 and k − f ′(c)ρ = 1.

2.2.2 If k − f ′(c)ρ = 0

In that case, (D2)crit = +∞. The unstable wavenumbers
are determined by

q2 ≤ f(c)D1

DD2
≡ q2

max. (28)

The most unstable mode is q∗ = 0 and the largest growth
rate σ∗ is given by

2σ∗ = −ξ +

√
ξ2 +

4f(c)D1

D
. (29)
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2.2.3 If k − f ′(c)ρ < 0

In that case, the system is unstable for

f ′(c)ρ − k

D
≤ q2 ≤ 1

D

[
f(c)D1

D2
+ f ′(c)ρ − k

]
. (30)

The growth rate diverges when

q2 → f ′(c)ρ − k

D
≡ q2

0 , (31)

corresponding to F (q) = 0. Close to the critical wavenum-
ber q0, we have

σ ∼
(

q0f(c)D1

2D

)1/2 1√
q − q0

, (q → q+
0 ). (32)

This expression is valid for ξ finite and ε = 0. It can
be directly obtain from equation (19) by using F ∼
−2Dq0(q − q0) → 0 for q → q0. Thus, when the temporal
term is neglected in equation (8), i.e. ε = 0, a critical be-
haviour occurs. This critical behaviour is regularized for
ε 	= 0. Indeed, taking q = q0, i.e. F = 0, in equation (17),
we obtain

εσ3 + εξσ2 + εq2
0D2σ − q2

0f(c)D1 = 0. (33)

Taking the limit ε → 0, we find that

σ(q0) ∼
(

q2
0f(c)D1

ε

)1/3

, (34)

which is finite for ε > 0 but diverges like ε−1/3 when ε → 0.
For ε → 0 and q → q0, the dispersion relation can be
simplified in

εσ3 + 2Dq0(q − q0)σ2 − q2
0f(c)D1 = 0. (35)

For ε = 0 we recover equation (32) and for q = q0 we
recover equation (34). For q → q0, we can easily express q
as a function of σ according to

q − q0 =
q2
0f(c)D1 − εσ3

2Dq0σ2
. (36)

On the other hand, for q = 0, equation (17) reduces to

εσ3 + (ξε − f ′(c)ρ + k)σ2 − ξ(f ′(c)ρ − k)σ = 0. (37)

The positive root of this equation is

σ(0) =
f ′(c)ρ − k

ε
=

Dq2
0

ε
, (38)

which is finite for ε > 0 but diverges like ε−1 when ε → 0.
The range of unstable wavenumbers is determined

graphically in Figure 3 and the evolution of the growth
rate of the perturbation as a function of the wavenumber
is plotted in Figure 4 (we have also consider the case ε 	= 0
in this figure by solving Eq. (17)). We see that the case
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Fig. 3. Graphical construction determining the range of un-
stable wavenumbers. We have taken ξ = D2 = D = 1, fD1 = 2
and k − f ′(c)ρ = −1.
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Fig. 4. Evolution of the growth rate of the perturbation as a
function of the wavenumber. We have taken ξ = D2 = D = 1,
fD1 = 2 and k − f ′(c)ρ = −1.

ε = 0 is very special. For ε = 0, the range of wavenumbers
q < q0 seems to be stable according to equation (30) be-
cause the two roots of equation (19) are negative. However,
for any finite value of ε, a third root appears. This root is
positive and tends to infinity when ε → 0 (see Eqs. (34)
and (38)). Therefore, this unstable branch is rejected to
infinity when ε → 0. This implies that the region q < q0

is in fact extremely unstable for ε = 0+. In particular, for
ε > 0, the most unstable mode is q∗ = 0 and the largest
growth rate is given by equation (38).

2.3 The case ξ → +∞
In the overdamped limit, the hydrodynamical equa-
tions (6–8) return the Keller-Segel model (1)-(2). Let us
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Fig. 5. Graphical construction determining the range of un-
stable wavenumbers. We have taken D2 = D = 1, fD1 = 2
and k − f ′(c)ρ = 1 (solid line) and k − f ′(c)ρ = −1 (dashed
line).

consider the stability analysis in that case for comparison
with the inertial case. The dispersion relation now reads

εξσ2 − (Fξ − εq2D2)σ − q2(f(c)D1 + D2F ) = 0, (39)

and the two roots are

σ± =
Fξ − εD2q

2 ± √
∆(q)

2εξ
, (40)

where

∆(q) = (Fξ + εq2D2)2 + 4εξq2f(c)D1 ≥ 0. (41)

Writing the solution in the form

σ =
−b ±√

b2 − 4ac

2a
, (42)

it is easy to see that the system is stable if (i) F < εq2D2/ξ
(b > 0) and if (ii) F < −f(c)D1/D2 (c > 0). It is unstable
otherwise. Since (ii) implies (i), the system is stable if F <
−f(c)D1/D2 and unstable otherwise. Thus, the system is
unstable if

k − f ′(c)ρ + Dq2 <
f(c)D1

D2
, (43)

and stable otherwise. The range of unstable wavenumbers
is determined graphically in Figure 5.

2.3.1 If k − f ′(c)ρ ≥ 0

In that case, the system is unstable for

D2 <
f(c)D1

k − f ′(c)ρ + Dq2
, (44)
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Fig. 6. Evolution of the growth rate of the perturbation as
a function of the wavenumber for the Keller-Segel model. We
have taken D2 = D = 1, fD1 = 2 and k − f ′(c)ρ = 1.

and stable otherwise. This is the same criterion as for the
inertial model. A necessary condition of instability is that

D2 <
f(c)D1

k − f ′(c)ρ
≡ (D2)crit. (45)

If this condition is fulfilled, the unstable wavenumbers are
such that

q2 ≤ 1
D

[
f(c)D1

D2
+ f ′(c)ρ − k

]
≡ q2

max. (46)

These results are unchanged with respect to the inertial
case.

We now determine the value of the optimal (most un-
stable) wavenumber q∗ and the corresponding growth rate
σ∗ (see Fig. 6). Equation (39) is a second order equation
in σ whose solutions are given by equation (40). We can
maximize σ+(q) to obtain q∗ and σ∗. However, it appears
simpler to proceed differently. Equation (39) can also be
viewed as a second order equation in x = q2 of the form

Ax2 + B(σ)x + C(σ) = 0, (47)

with

A = DD2, (48)

B(σ) = (Dξ + εD2)σ − f(c)D1 − D2(f ′(c)ρ − k), (49)

C(σ) = εξσ2 − ξ(f ′(c)ρ − k)σ ≥ 0. (50)

There will be two roots x1 and x2 provided that B(σ) < 0
and ∆(σ) = B2 − 4AC ≥ 0. This last condition can be
written

∆(σ) ≡ aσ2 + bσ + c ≥ 0, (51)
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with

a = (Dξ − εD2)2, (52)

b = −2[D2(f(c)D1 + D2(f ′(c)ρ − k))ε

+ Dξf(c)D1 − DD2ξ(f ′(c)ρ − k)] < 0, (53)

c = [f(c)D1 + D2(f ′(c)ρ − k)]2. (54)

The discriminant δ = b2−4ac of equation (51) is given by

δ = 16f(c)ξDD1D2[(f(c)D1

+D2(f ′(c)ρ − k))ε − Dξ(f ′(c)ρ − k)]. (55)

The condition ∆(σ) ≥ 0 to have two roots x1 and x2 is
equivalent to σ ≤ σ∗ with

σ∗ =
−b −√

δ

2a
. (56)

(Note that the possibility σ ≥ (−b +
√

δ)/2a must be re-
jected since it does not satisfy the requirement B(σ) < 0).
For σ = σ∗, the two roots x1 = x2 = x∗ coincide (∆ = 0)
so that σ∗ is the maximum growth rate. It is reached for
an optimal wavenumber x∗ = −B/(2A), i.e.

q2
∗ =

−B(σ∗)
2A

. (57)

2.3.2 If k − f ′(c)ρ < 0

In that case the system is unstable for the wavenumbers

q2 ≤ 1
D

[
f(c)D1

D2
+ f ′(c)ρ − k

]
≡ q2

max. (58)

The growth rate of the perturbation as a function of the
wavenumber is plotted in Figure 7. As discussed in Sec-
tion 2.2.3, the case ε = 0 is special and will be considered
specifically in the next section.

2.4 The case ξ → +∞ and ε = 0

If we neglect the temporal term (ε = 0) in the Keller-Segel
model (ξ → +∞), we obtain the dispersion relation

Fξσ + q2(f(c)D1 + D2F ) = 0, (59)

so that σ is explicitly given by

ξσ = q2

(
f(c)D1

Dq2 + k − f ′(c)ρ
− D2

)
. (60)

The instability criterion is given by equation (22).

2.4.1 If k − f ′(c)ρ ≥ 0

This is a particular case of Section 2.2.1 corresponding
to ξ → +∞. The expression of the largest growth rate is
given by

σ∗ =
f(c)D1

ξD

⎛
⎝1 −

√
D2(k − f ′(c)ρ)

f(c)D1

⎞
⎠

2

. (61)

The other results are unchanged.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
q

0

1

2

3

4

5

6

ξσ

ε=0

ε=0.1ε=0.2

ε=0.3

ε=0.4

Fig. 7. Evolution of the growth rate of the perturbation as
a function of the wavenumber for the Keller-Segel model. We
have taken D2 = D = 1, fD1 = 2 and k − f ′(c)ρ = −1.

2.4.2 If k − f ′(c)ρ < 0

The system is unstable for the wavenumbers determined
by equation (30). For q → q+

0 , corresponding to F ∼
−2Dq0(q − q0) → 0, the growth rate diverges like

ξσ ∼ q0f(c)D1

2D(q − q0)
. (62)

This divergence is regularized if ε 	= 0. Taking q = q0, i.e.
F = 0 in equation (39), we get

εξσ2 + εq2
0D2σ − q2

0f(c)D1 = 0. (63)

For ε → 0, we obtain

σ(q0) ∼
(

q2
0f(c)D1

ξε

)1/2

, (64)

which is finite for ε > 0 but diverges like ε−1/2 when ε → 0.
For ε → 0 and q → q+

0 , equation (39) can be simplified in

εξσ2 + 2Dq0ξ(q − q0)σ − q2
0f(c)D1 = 0. (65)

For ε = 0 we recover equation (62) and for q = q0 we
recover equation (64). The solution of equation (65) is

εσ = −Dq0(q − q0) +

√
D2q2

0(q − q0)2 +
εq2

0f(c)D1

ξ
.

(66)

On the other hand, for q = 0, equation (39) leads to

σ(0) =
f ′(c)ρ − k

ε
, (67)

which is finite for ε > 0 but diverges like ε−1 when ε → 0.
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Equations (32–34) and (62–64) differ because both σ
and ξ tend to infinity, so that the expression depend on
how the limits are taken. The general case can be treated
as follows. For ε = 0, taking q → q+

0 in equation (19) we
get

σ(σ + ξ) ∼ q0f(c)D1

2D(q − q0)
. (68)

On the other hand, for ε 	= 0, taking q = q0 (i.e. F = 0)
in equation (17), we get

σ2(σ + ξ) ∼ q0f(c)D1

ε
. (69)

Finally, for ε → 0 and q → q0, we have

εσ3 + (εξ + 2Dq0(q − q0))σ2

+ 2Dq0(q − q0)ξσ − q2
0f(c)D1 = 0. (70)

which reproduces the correct behaviours (68) and (69).

3 Analogy with the Jeans problem
in astrophysics

3.1 The damped Euler equations

Let us consider a particular case of equations (6–8) cor-
responding to D2(ρ, c) = p′(ρ) and D1(ρ, c) = ρS′(c)
where p and S are arbitrary functions. In that case, the
hydrodynamical equations take the form

∂ρ

∂t
+ ∇ · (ρu) = 0, (71)

∂u
∂t

+ (u · ∇)u = −1
ρ
∇p + ∇S(c) − ξu, (72)

ε
∂c

∂t
= −k(c)c + ρf(c) + D∆c. (73)

For ξ → +∞, we can neglect the inertia of the particles so
that ρu � − 1

ξ (∇p−ρ∇S(c)). Substituting this relation in
equation (71), we obtain a special case of the Keller-Segel
model

∂ρ

∂t
= ∇ · [χ (∇p − ρS′(c)∇c)] , (74)

where we have set χ = 1/ξ. Equations (71, 72) can be
viewed as fluid equations appropriate to the chemotac-
tic problem. Equation (71) is an equation of continuity
and equation (72) is similar to the Euler equation where
p plays the role of a pressure and the chemotactic at-
traction plays the role of a force. Since p = p(ρ), these
equations describe a barotropic fluid. The main novelty
of these equations with respect to usual hydrodynamical
equations is the presence of a friction force which allows
to make a connection between hyperbolic (ξ = 0) and
parabolic (ξ → +∞) models.

This hydrodynamic model including a friction force is
similar to the damped barotropic Euler-Poisson system

which describes a gas of self-gravitating Brownian parti-
cles [8,10] or the violent relaxation of collisionless stellar
systems on the coarse-grained scale in astrophysics [7]. In
that analogy, the concentration of the chemical c plays the
role of the gravitational potential Φ. The main difference
between the two models is that the Poisson equation for
self-gravitating systems is replaced by a more general field
equation (73) for bacterial populations. To emphasize the
connection with astrophysical problems, let us consider a
particular case of equations (71–73) where ε = 0, S(c) = c
and k and f are constant. Then, introducing notations
similar to those used in astrophysics (noting c = −Φ,
k/D = k2

0 , f/D = SdG), we can rewrite equations (71–73)
in the form

∂ρ

∂t
+ ∇ · (ρu) = 0, (75)

∂u
∂t

+ (u · ∇)u = −1
ρ
∇p −∇Φ − ξu, (76)

∆Φ − k2
0Φ = SdG(ρ − ρ). (77)

When k0 = ρ = 0, these equations are isomorphic to the
damped Euler-Poisson system describing self-gravitating
Brownian particles [8,10]. In the strong friction limit,
we get

∂ρ

∂t
= ∇ ·

[
1
ξ

(∇p + ρ∇Φ)
]

, (78)

which can be interpreted as a generalized Smoluchowski
equation. Thus, for ξ → +∞, we obtain the generalized
Smoluchowski-Poisson system describing self-gravitating
Brownian particles in an overdamped limit [8]. Alterna-
tively, for ξ = 0 we recover the barotropic Euler-Poisson
system that has been studied at length in astrophysics
to determine the period of stellar pulsations [14] and the
formation of large-scale structures in cosmology [5]. There-
fore, the chemotactic model (75)-(77) is similar to astro-
physical models with additional terms. In the astrophysi-
cal context, the case k0 	= 0 would correspond to a shield-
ing of the gravitational interaction on a typical length k−1

0 .
This Yukawa shielding appears in theories where the gravi-
ton has a mass but in that case k0 is very small which does
not need to be the case in the biological problem.

We now consider the linear dynamical stability of an
infinite and homogeneous solution of equations (75–77).
By mapping equations (75–77) onto a generalized astro-
physical model, we shall see that the instability criteria
obtained in Section 2 are connected to (and extend) the
Jeans instability criterion of astrophysics [12]. To avoid
the Jeans swindle [15] when k0 = 0, we have introduced a
“neutralizing background” ρ in equation (77). In fact, in
the biological problem, this term appears naturally when
we consider the limit of large diffusivity of the chemi-
cal (see [13]); therefore, there is no “Jeans swindle” in
the biological problem based on equation (2). A similar
term ρ appears in cosmology when we take into account
the expansion of the universe and work in the comoving
frame [5].
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3.2 The dispersion relation

We consider an infinite and homogeneous stationary so-
lution of equations (75–77) with u = 0, ρ = Cst. and
Φ = Cst. such that

−k2
0Φ = SdG(ρ − ρ). (79)

For a pure Newtonian interaction with k0 = 0, we have
ρ = ρ. Linearizing the equations around this stationary
solution, we get

∂δρ

∂t
+ ρ∇ · δu = 0, (80)

ρ
∂δu
∂t

= −c2
s∇δρ − ρ∇δΦ − ξρδu, (81)

∆δΦ − k2
0δΦ = SdGδρ, (82)

where we have introduced the velocity of sound c2
s = p′(ρ).

Eliminating the velocity between equations (80) and (81),
we obtain

∂2δρ

∂t2
+ ξ

∂δρ

∂t
= c2

s∆δρ + ρ∆δΦ. (83)

Looking for solutions of the form δρ ∼ δρ̂ei(k·r−ωt), we get

(−ω2 − iξω + c2
sk

2)δρ̂ = −ρk2δΦ̂, (84)

δΦ̂ = − SdG

k2 + k2
0 − iω

δρ̂. (85)

From these equations, we obtain the dispersion relation

ω(ω + iξ) = c2
sk

2 − SdGρk2

k2 + k2
0

. (86)

In the case ξ = 0 and k0 = 0, we recover the usual Jeans
dispersion relation [12]:

ω2 = c2
sk

2 − SdGρ. (87)

3.3 Instability criterion

If we set σ = −iω, the dispersion relation becomes

σ2 + ξσ + k2

(
c2
s −

SdGρ

k2 + k2
0

)
= 0. (88)

The two roots are

σ =
−ξ ± √

∆(k)
2

, (89)

with

∆(k) = ξ2 − 4k2

(
c2
s −

SdGρ

k2 + k2
0

)
. (90)

Accordingly, the system is unstable if

c2
s <

SdGρ

k2 + k2
0

, (91)

and stable otherwise. A necessary condition of instabil-
ity is

c2
s <

SdGρ

k2
0

≡ (c2
s)crit. (92)

If this condition is fulfilled the unstable wavelengths are
such that

k ≤
√

SdGρ

c2
s

− k2
0 ≡ kmax. (93)

The wavelength which has the largest growth rate is
given by

k2
∗ =

(
SdGρk2

0

c2
s

)1/2

− k2
0 , (94)

and the corresponding growth rate is given by

2σ∗ = −ξ +

√√√√√ξ2 + 4SdGρ

⎛
⎝1 −

√
c2
sk

2
0

SdGρ

⎞
⎠

2

. (95)

The instability criterion (91) is equivalent to the instabil-
ity criterion (22) of Section 2.2 for the particular case of
the chemotactic model considered in Section 3.1. The par-
allel with astrophysics is interesting to develop in order to
give a more physical interpretation to equation (22). All
the other formulae can be interpreted accordingly. In par-
ticular, we note that the coefficient D2 plays the role of a
velocity of sound c2

s.

3.4 Particular cases

Let us consider particular cases of the foregoing expres-
sions:
• For cs = 0, one has kmax = +∞, k∗ = +∞ and

σ∗ =
−ξ +

√
ξ2 + 4SdGρ

2
.

(96)

• For k0 = 0 (Newtonian potential), one has (c2
s)crit =

+∞, kmax =
(
SdGρ/c2

s

)1/2 ≡ kJ (Jeans length), k∗ =
0 and

σ∗ =
−ξ +

√
ξ2 + 4SdGρ

2
.

(97)

• For ξ = 0, one has

σ∗ = (SdGρ)1/2

⎛
⎝1 −

√
c2
sk

2
0

SdGρ

⎞
⎠ . (98)

• For ξ → +∞, one has

σ∗ =
SdGρ

ξ

⎛
⎝1 −

√
c2
sk

2
0

SdGρ

⎞
⎠

2

. (99)
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3.5 Isothermal gas

For an isothermal gas with an equation of state p = ρT
(for simplicity, we have noted T instead of kBT/m), the
velocity of sound is equal to the square root of the tem-
perature: c2

s = T . It is relevant to re-express the previous
relations as follows. Introducing the critical temperature

Tc =
SdGρ

k2
0

, (100)

the growth rate of the perturbation can be written

2σ

ξ
= −1 +

√
1 − 4SdGρ

ξ2

k2

k2
0

(
T

Tc
− 1

1 + (k/k0)2

)
.

(101)

The condition of instability reads

T

Tc
≤ 1

1 + (k/k0)2
, (102)

and a necessary condition of instability is T < Tc. For
T < Tc the unstable wavenumbers (see Fig. 8) are such
that k ≤ kmax(T ) with

kmax(T )
k0

=

√
Tc

T
− 1. (103)

The wavenumber with the largest growth rate is given by

k∗(T )
k0

=

[(
Tc

T

)1/2

− 1

]1/2

, (104)

and the largest growth rate by

2σ∗
ξ

= −1 +

√√√√1 +
4SdGρ

ξ2

[
1 −

(
T

Tc

)1/2
]2

. (105)

The maximum wavenumber kmax(T ) and the most unsta-
ble wavenumber k∗(T ) are plotted as a function of the tem-
perature in Figure 9. In Figure 10, we represent the growth
rate σ(k) as a function of the wavenumber. Finally, in Fig-
ure 11, we plot the largest growth rate σ∗(T ) as a function
of the temperature. The maximum value of the largest
growth rate σ∗(T ) is obtained for T = 0 and is given by

2(σ∗)max

ξ
= −1 +

√
1 +

4SdGρ

ξ2
. (106)

For k0 = 0 (Newtonian interaction), then Tc = +∞ and
the growth rate of the perturbation can be expressed as

2σ

ξ
= −1 +

√
1 − 4k2

ξ2

(
T − SdGρ

k2

)
. (107)

The condition of instability is

k ≤ kmax =
(

SdGρ

T

)1/2

, (108)
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Fig. 8. Graphical construction determining the range of un-
stable wavenumbers.
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Fig. 9. Maximum wavenumber kmax(T ) and most unstable
wavenumber k∗(T ) as a function of the temperature T . The
line kmax(T ) determines the separation between stable and
unstable states.

where kmax is the equivalent of the Jeans wavenumber.
The maximum growth rate is obtained for k∗ = 0 and its
value is given by

2σ∗
ξ

= −1 +

√
1 +

4SdGρ

ξ2
, (109)

independently of the temperature. The growth rate σ(k) is
represented as a function of the wavenumber in Figure 12.

4 Conclusion

In this paper, we have studied the linear dynamical sta-
bility of an infinite and homogeneous distribution of bio-
logical cells whose density distribution evolves under the
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Fig. 10. Growth rate of the perturbation as a function of the
wavenumber. We have taken 4SdGρ/ξ2 = 1 and T/Tc = 0.5.
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Fig. 11. Dependence of the largest growth rate σ∗(T ) with
the temperature. We have taken 4SdGρ/ξ2 = 1.

process of chemotaxis. We have modeled their evolution by
hydrodynamical equations including a friction force [8,9].
This inertial model takes into account the fact that the
cells do not respond immediately to the chemotactic drift
but that there is a relaxation time ξ−1 for their velocity
to get aligned with the chemotactic gradient. The usual
Keller-Segel model [2] is recovered in the strong friction
limit ξ → +∞ (or for large times t � ξ−1). Alternatively,
for ξ = 0, we recover the inertial model of [3]. We have
shown that these equations were similar to those describ-
ing self-gravitating Brownian particles and that the dy-
namical stability of biological populations was related to
the Jeans problem in astrophysics. These results extend
the analogies between biology and astrophysics investi-
gated in [9].

The mathematical model (6)-(8) considered in this pa-
per can have applications in biology. Depending on the
value of the parameters, it can describe different sorts of

0 0.2 0.4 0.6 0.8 1
k/kmax(T)

0

0.1

0.2

0.3

0.4

σ/
ξ

σ*

Fig. 12. Growth rate σ(k) as a function of the wavenumber
when k0 = 0. We have taken 4SdGρ/ξ2 = 1. In terms of the
variable k/kmax(T ), the curve is independent on the tempera-
ture.

systems. The Keller-Segel model (1)-(2) obtained in the
overdamped limit ξ → ∞ in which inertial terms can be
neglected is appropriate to describe experiments on bacte-
ria like Escherichia Coli and slime mold amoebae like Dic-
tyostelium discoideum [2]. These systems exhibit pointwise
concentrations as a result of chemotactic collapse. On the
other hand, the hydrodynamic model (3)-(5) was shown
to generate a vascular network starting from randomly
seeded endothelial cells [3,4]. This can account for exper-
iments of in vitro formation of blood vessels where cells
randomly spread on a gel matrix autonomously organize
to form a connected network that can be interpreted as
the initiation of angiogenesis. This is also similar to the
formation of capillary blood vessels in living beings dur-
ing embriogenesis [16]. The authors of [3] evidence a per-
colative transition as a function of the concentration of
cells. Above a critical density, the system forms a contin-
uous multi-cellular network which can be described by a
collection of nodes connected by chords. For even higher
concentrations a “swiss cheese” pattern is observed. Such
structures can be obtained only if inertial terms are ac-
counted for. Another hydrodynamic model of bacterial
colonies taking into account interial terms has been pro-
posed by Lega and Passot [17] to describe the evolution of
bacterial colonies growing on soft agar plates. This model
consists in advection-reaction-diffusion equations for the
concentrations of nutrients, water, and bacteria, coupled
to a single hydrodynamic equation for the velocity field
of the bacteria-water mixture. This model is able to re-
produce the usual colony shapes together with nontrivial
dynamics inside the colony such as vortices and jets re-
cently observed in wet colonies of Bacillus subtilis [18].
This can be linked to a process of inverse cascade of
energy as in two-dimensional hydrodynamic turbulence.
Lega and Passot [17] show that the large-scale Reynolds
numbers can be relatively high so that inertial effects have
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to be taken into account to adequately model the experi-
ments of [18]. It is shown also that viscosity is important in
this model. Although the hydrodynamic equations of [17]
are different from equations (6–8), their model displays a
mechanism for collective motion towards fresh nutrients
which is similar to classical chemotaxis. In particular, a
chemotacticlike behaviour and a connection to the Keller-
Segel model (1)-(2) is obtained for short times.

In this paper, we have considered solutions of equa-
tions (6–8) near an infinite and homogeneous distribution
and we have investigated the time dependence of these
solutions in the linear regime1. When the criterion (18)
is fulfilled, the appearance of a spontaneous perturbation
can lead to an instability. The perturbation grows until
the system can no longer be described by equilibrium or
near-equilibrium equations. In that case, we must account
for the full nonlinearities encapsulated in equations (6–8).
Of course, the nonlinear regime of instability is the most
relevant for biological applications. This nonlinear regime
has been investigated in detail for a reduced version of the
Keller-Segel model [13]:

∂ρ

∂t
= D∆ρ − χ∇ · (ρ∇c), (110)

∆c = −λρ. (111)

In that case, the concentration of the chemical is related
to the concentration of the bacteria by a Poisson equa-
tion. These equations are isomorphic to the Smoluchowski-
Poisson system

∂ρ

∂t
= ∇ ·

[
1
ξ

(T∇ρ + ρ∇Φ)
]

, (112)

∆Φ = SdGρ, (113)

describing self-gravitating Brownian particles [11]. In di-
mension d ≥ 2, they exhibit blow-up solutions leading
ultimately to the formation of Dirac peaks. This cor-
responds to a chemotactic collapse in biology or to an
isothermal collapse (in the canonical ensemble) in gravity.
There is a vast literature on the theoretical study of these
equations both in applied mathematics (see the review
by Horstmann [19]) and in physics [10,11,20–22]. Gener-
alized chemotactic models and generalized gravitational
models have also been studied, like in [23] to account for
anomalous diffusion or like in [10] to account for inertial
effects. On the other hand, bifurcations between “stripes”
and “spots” have been found when the degradation of the
secreted chemical is taken into account so that the equi-
librium structures of the bacterial colonies are similar to
“domain walls” in phase ordering kinetics [24]. The linear

1 The linear dynamical stability of inhomogeneous distribu-
tions of bacteria has also been studied in [11,20] for over-
damped models and in [10] for inertial models, when the equa-
tion for the concentration of the chemical takes the form of
a Poisson equation (111) like in gravity. In these studies, the
distribution of particles is self-confined [10] or confined in a
finite domain (box) [11,20]. In biology, the box can represent
a droplet or the container itself.

instability regime that we have considered in this paper
initiates the nonlinear regime where interesting and non-
trivial structures form, accounting for the morphogenesis
of bacterial populations. In the linear instability analy-
sis, the general form of perturbation is a superposition
of sinusoidal waves. Each single wave corresponds to a
“streak” with relatively high density. However, other pat-
terns like regularly spaced “clouds” can be obtained by a
proper superposition of “streaks” (see Appendix A of [2]).
These “clouds” will be presumably selected by nonlinear
effects and each of them can initiate a local collapse lead-
ing to pointwise blow-up [11,19,20]. Indeed, these clouds
have the radial symmetry that is assumed at the start in
most studies of chemotactic collapse. This will lead to a
set of N singular structures. These compact structures in-
teract with each other and lead to a coarsening process
where the number of clusters decays in time as they col-
lapse to each other. This process may share some analogies
with the aggregation of vortices in two-dimensional decay-
ing turbulence [25]. Therefore, the connection between the
linear regime investigated in this paper and the nonlinear
regime investigated in [11,19,20] is relatively clear.
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